

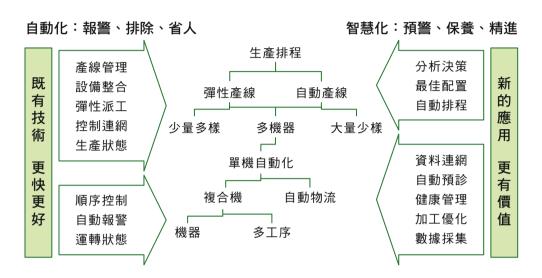
工具機自動化與智慧化 融合的實體系統

巫 茂 熾 (Mao-ChihWu)

] 腦系統導入之實踐與輔導

經理 海大學精實系統團隊核心成員。歷任連豐機械設計工程師, ·協理,事業部副總經理等職務。大型研發專專案的FMS主導性新產品、五軸加工技術 友嘉實業研發部課員、課長

加工機業界科專計劃主持人。近年積極致力於工具機業,精實製造管理、產品開發管理與


回顧1990年代的電腦整合製造系統(CIMS, Computer Integrated Manufacturing System)、設備連線即時管理系統 (EMS, Equipment Management System), 是運用資訊科技來 強化工廠管理的自動化,當時的彈性製造系統(FMS,Flexible Manufacturing System)則是多樣少量生產自動化的解決方案。

2011年,德國科技院(ACATECH)提出工業4.0,則是用製造 能力解決市場不確定,智慧製造是解決的方案。而「生產製造設 備的智慧能力」,以及「滿足顧客需要的調適能力」是大量客製 化(mass customization)的課題、製造業的挑戰。

自動化的方案,用控制設備的方式確保計畫執行,運作期間 若發生問題,則自動報警並停機,快速排除後繼續執行任務。然 而市場不確定的因素瞬息萬變,自動化與彈性化已無法徹底解決 現在的難題,需要再融合以數據分析決策的智慧能力。自動化與 智慧化融合的實體系統,能預知設備異常提前改善或先期採取對 策,創造更大的價值。

工具機的實體系統

工具機產品,從人和馬匹的勞動被機械力取代的機械化階段, 再到運用電力滿足大量生產的電氣化階段;當電腦崛起普及後, 機械與電腦融合的數值控制器,可即時取得資料達到監控,此時 邁入數位化階段,以及最近應用網路技術搭配感測器,即時取得 設備訊息的數據,改善產銷瓶頸,創造新價值的智慧化階段。這 四個階段的目的,可用省人力的自動化,和提高應變力的智慧化

自動化融合智慧化的智慧製造實體系統圖

來說明。如上圖,在生產製造領域,工業4.0 的變革,是在自動化的基礎上,增加智慧化 的功能。

將數值控制器裝在機器上,提高生產精度 和效率,設備搭配自動上下料的自動化整合 技術,可以節省人力,這是將資訊工具運用 到生產設備的自動化方案。

自動化生產線方案,根據生產樣式多寡和批量大小的需要,有單樣大批量的自動產線,和多樣小批量的彈性產線。自動化的技術創新,在機器層,需要有順序控制、自動報警和運轉狀態監視的功能。數台單機連成的產線層,則需要設備整合、產線管理、狀態監控、彈性派工以及產線連網上傳生產資訊的功能。

工業4.0的智慧化變革,是大量訂製、提高 顧客調適能力的解決方案。智慧生產是在自 動化基礎下,融入資料收集、加工優化的設 備健康管理和預診功能,透過設備連網,將 生產實態上傳,結合生產需求透過運算,能 自動排程與最佳配置,少量多樣也能發揮最 大產能,具有分析決策的智慧能力。

從價值提升到價值創造

早期的自動化是用I/O(輸入/輸出)點來控制機械,並搭配序列埠(Serial port,如RS-232)做資料上傳、下載。1980年代起,機器使用步進馬達、伺服馬達、NC、PLC、CNC等產品和技術,提高機器產品的自動化程度。從1990年代起,再增加電腦技術和整合技術的應用,將機器連結起來成為CIMS成

員之一的自動化產線。

自動化的設備或產線,偵測到故障信號, 會自動停機、報警,待故障排除後才能繼續 生產。設備或產線運轉期間,收集來的運轉 資料,經分析可以得到生產稼動率,故障率 等產能的績效指標。降低人力、縮短故障等 待維修時間、提升產能是自動化的目標。隨 著控制軟體開放、硬體升級,自動化能力越 來越好,整合的深度越來越深、範圍越來越 廣,現在比過去更快更好,大幅提升整合的 效益。

產線上設備層的加工時態和操作情境資料,透過網路上傳,除了被即時監控,更能 應用收集的狀態資料,透過決策系統微調排 程計畫,甚至自動修正排程,讓產線以最佳 的方式貢獻產能,這是產線的智慧化價值。

值測到故障訊息,讓設備或產線在最短時間內恢復生產;大量且重複的工作用機械力取代人力,在控制技術升級與開放的條件下,控制數據可以在更短時間內收集與下達,自動化的生產價值大幅提升。運用設備或產線狀態的數據,做好檢康管理,自動決策與最佳配置與排程能實現,採集並應用設備運作數據,讓變化不會影響生產計畫,智慧化可以創造比自動化更多的價值。

實體系統是智慧製造創造價值的關鍵

實體系統(Physical Systems)具有數位 化、連結化、智慧化的功能(參閱《面對未 來的智造者-工業4.0的困惑與下一波製造業 再興》大寫出版,2018年10月),可以將設 備層與產線層的控制數據和運作數據,即時 上傳到智慧製造的資料庫。

人工智慧(AI,Artificial Intelligence)給的資料越多,它就會變得越聰明,且學習更快,發揮的價值就越大。所以AI必須要有計畫與預測資料,以及收集回來可以信賴的實際資料等大數據(Big data)。大數據是指要有即時正確與豐富的資料,實體系統是提供設備與產線製造大數據的實際資料。如前所述,實體系統能夠即時充分掌握,設備和產線的控制和運轉數據,讓運用AI技術的智慧製造發揮更大的價值。Ma